Statistical Formulas
Mean (Average):
- Syntax:
=AVERAGE(range) - Example:
=AVERAGE(A1:A10) - Calculates the mean (average) of a range of values.
- Syntax:
Median:
- Syntax:
=MEDIAN(range) - Example:
=MEDIAN(A1:A10) - Finds the median (middle value) of a range of values.
- Syntax:
Mode:
- Syntax:
=MODE.SNGL(range) - Example:
=MODE.SNGL(A1:A10) - Identifies the most frequently occurring value in a range.
- Syntax:
Standard Deviation:
- Syntax:
=STDEV.P(range)or=STDEV.S(range) - Example:
=STDEV.P(A1:A10)or=STDEV.S(A1:A10) - Calculates the standard deviation for a population (
STDEV.P) or a sample (STDEV.S).
- Syntax:
Variance:
- Syntax:
=VAR.P(range)or=VAR.S(range) - Example:
=VAR.P(A1:A10)or=VAR.S(A1:A10) - Computes the variance for a population (
VAR.P) or a sample (VAR.S).
- Syntax:
Correlation Coefficient:
- Syntax:
=CORREL(range1, range2) - Example:
=CORREL(A1:A10, B1:B10) - Calculates the correlation coefficient between two sets of values.
- Syntax:
Regression Analysis (Slope):
- Syntax:
=SLOPE(known_y's, known_x's) - Example:
=SLOPE(B1:B10, A1:A10) - Computes the slope of the linear regression line.
- Syntax:
Regression Analysis (Intercept):
- Syntax:
=INTERCEPT(known_y's, known_x's) - Example:
=INTERCEPT(B1:B10, A1:A10) - Calculates the y-intercept of the linear regression line.
- Syntax:
Percentile:
- Syntax:
=PERCENTILE.INC(range, k) - Example:
=PERCENTILE.INC(A1:A10, 0.75) - Finds the k-th percentile of a dataset.
- Syntax:
Z-Score:
- Syntax:
=Z.TEST(range, [sigma]) - Example:
=Z.TEST(A1:A10) - Calculates the Z-score for a dataset, assuming a normal distribution.
Quartiles:
- Syntax (First Quartile Q1):
=QUARTILE.INC(range, 1) - Syntax (Second Quartile Q2/Median):
=QUARTILE.INC(range, 2) - Syntax (Third Quartile Q3):
=QUARTILE.INC(range, 3) - Example:
=QUARTILE.INC(A1:A10, 1),=QUARTILE.INC(A1:A10, 2),=QUARTILE.INC(A1:A10, 3) - Computes the quartiles of a dataset.
- Syntax (First Quartile Q1):
Range:
- Syntax:
=MAX(range) - MIN(range) - Example:
=MAX(A1:A10) - MIN(A1:A10) - Calculates the range, which is the difference between the maximum and minimum values in a dataset.
- Syntax:
Geometric Mean:
- Syntax:
=GEOMEAN(range) - Example:
=GEOMEAN(A1:A10) - Computes the geometric mean of a dataset.
- Syntax:
Harmonic Mean:
- Syntax:
=HARMEAN(range) - Example:
=HARMEAN(A1:A10) - Calculates the harmonic mean of a dataset.
- Syntax:
Skewness:
- Syntax:
=SKEW.P(range)or=SKEW.S(range) - Example:
=SKEW.P(A1:A10)or=SKEW.S(A1:A10) - Measures the skewness of a distribution for a population (
SKEW.P) or a sample (SKEW.S).
- Syntax:
Kurtosis:
- Syntax:
=KURT.P(range)or=KURT.S(range) - Example:
=KURT.P(A1:A10)or=KURT.S(A1:A10) - Measures the kurtosis (tailedness) of a distribution for a population (
KURT.P) or a sample (KURT.S).
- Syntax:
Chi-Square Test:
- Syntax:
=CHISQ.TEST(observed_range, expected_range) - Example:
=CHISQ.TEST(A1:A10, B1:B10) - Conducts a chi-square test for independence.
- Covariance:
- Syntax:
=COVARIANCE.P(range1, range2)or=COVARIANCE.S(range1, range2) - Example:
=COVARIANCE.P(A1:A10, B1:B10)or=COVARIANCE.S(A1:A10, B1:B10) - Computes the covariance between two sets of values for a population (
COVARIANCE.P) or a sample (COVARIANCE.S). - Exponential Moving Average (EMA):
- Syntax:
=EMA(range, smoothing_factor) - Example:
=EMA(A1:A10, 0.2) - Calculates the exponential moving average with a specified smoothing factor.
- Pearson Correlation Coefficient:
- Syntax:
=PEARSON(range1, range2) - Example:
=PEARSON(A1:A10, B1:B10) - Measures the strength and direction of the linear relationship between two sets of values.
- T-Test:
- Syntax:
=T.TEST(array1, array2, tails, type) - Example:
=T.TEST(A1:A10, B1:B10, 2, 1) - Conducts a t-test to determine if there is a significant difference between two sets of values.
- F-Test:
- Syntax:
=F.TEST(array1, array2) - Example:
=F.TEST(A1:A10, B1:B10) - Performs an F-test to compare the variances of two sets of values.
- Covariance Matrix:
- Syntax:
=COVARIANCE.SNGL(matrix) - Example:
=COVARIANCE.SNGL(A1:C10) - Computes the covariance matrix for a range of values.
- Descriptive Statistics:
- Syntax:
=DESCRIPTIVE.STAT(range) - Example:
=DESCRIPTIVE.STAT(A1:A10) - Provides a summary of descriptive statistics for a range of values, including mean, standard deviation, minimum, maximum, etc.
Frequency Distribution:
- Syntax:
=FREQUENCY(data_array, bins_array) - Example:
=FREQUENCY(A1:A10, {0, 10, 20, 30}) - Creates a frequency distribution based on specified bins.
- Syntax:
Confidence Interval for Mean:
- Syntax:
=CONFIDENCE.T(alpha, stdev, size) - Example:
=CONFIDENCE.T(0.05, STDEV(A1:A10), COUNT(A1:A10)) - Calculates the confidence interval for the mean using t-distribution.
- Syntax:
Two-Sample T-Test:
- Syntax:
=T.TEST(range1, range2, tails, type) - Example:
=T.TEST(A1:A10, B1:B10, 2, 3) - Conducts a two-sample t-test for the equality of means.
- Syntax:
ANOVA (Analysis of Variance):
- Syntax:
=ANOVA(range1, range2, ...) - Example:
=ANOVA(A1:A10, B1:B10, C1:C10) - Performs a one-way analysis of variance.
- Syntax:
Exponential Smoothing:
- Syntax:
=FORECAST.ETS(range, timeline, [seasonality], [alpha], [beta], [gamma], [phi], [M], [opt]) - Example:
=FORECAST.ETS(A1:A10, B1:B10, 1, 0.3, 0.1, 0.2, 0.5, 12, TRUE) - Applies exponential smoothing to time series data.
- Syntax:
Percentile Rank:
- Syntax:
=PERCENTRANK.INC(range, x, [significance]) - Example:
=PERCENTRANK.INC(A1:A10, A1) - Calculates the percentile rank of a value within a dataset.
- Syntax:
Covariance:
- Syntax:
=COVARIANCE.P(range1, range2)or=COVARIANCE.S(range1, range2) - Example:
=COVARIANCE.P(A1:A10, B1:B10)or=COVARIANCE.S(A1:A10, B1:B10) - Computes the covariance between two sets of values for a population (
COVARIANCE.P) or a sample (COVARIANCE.S). Covariance Matrix:
- Syntax:
=COVARIANCE.P(matrix1, matrix2)or=COVARIANCE.S(matrix1, matrix2) - Example:
=COVARIANCE.P(C1:E10, F1:H10)or=COVARIANCE.S(C1:E10, F1:H10) - Computes the covariance matrix between two sets of matrices for a population (
COVARIANCE.P) or a sample (COVARIANCE.S).
- Syntax:
Pearson Correlation Coefficient:
- Syntax:
=CORREL(array1, array2) - Example:
=CORREL(A1:A10, B1:B10) - Calculates the Pearson correlation coefficient between two sets of values.
- Syntax:
Critical Value for T-Distribution:
- Syntax:
=T.INV.2T(probability, degrees_freedom) - Example:
=T.INV.2T(0.05, 8) - Determines the critical value for a two-tailed T-distribution.
- Syntax:
Chi-Square Test for Independence:
- Syntax:
=CHISQ.TEST(observed_range, expected_range) - Example:
=CHISQ.TEST(A1:A10, B1:B10) - Conducts a chi-square test for independence between two categorical variables.
- Syntax:
Fisher Transformation for Correlation:
- Syntax:
=ATANH(correlation_coefficient) - Example:
=ATANH(CORREL(A1:A10, B1:B10)) - Applies the Fisher transformation to the Pearson correlation coefficient.
- Syntax:
Moving Average:
- Syntax:
=AVERAGE(range) - Example:
=AVERAGE(OFFSET(A1,0,0,5,1)) - Computes the moving average of a dataset by using the AVERAGE function with OFFSET.
- One-Sample Z-Test:
- Syntax:
=Z.TEST(range, [mu]) - Example:
=Z.TEST(A1:A10, 70) - Conducts a one-sample z-test for the population mean.
- Confidence Interval for Proportion:
- Syntax:
=CONFIDENCE.NORM(alpha, stdev, size) - Example:
=CONFIDENCE.NORM(0.05, 0.02, 100) - Calculates the confidence interval for a population proportion using the normal distribution.
- Exponential Distribution Probability:
- Syntax:
=EXP.DIST(x, lambda, [cumulative]) - Example:
=EXP.DIST(A1, 0.1, TRUE) - Computes the probability of an exponential distribution.
- Hypothesis Test for Population Variance:
- Syntax:
=VAR.P(range)*((COUNT(range)-1)/CHISQ.INV(alpha/2, COUNT(range)-1)) <= VAR.S(range) <= VAR.P(range)*((COUNT(range)-1)/CHISQ.INV(1-alpha/2, COUNT(range)-1)) - Example: Conducts a hypothesis test for the population variance.
- F-Test for Two-Sample Variances:
- Syntax:
=F.TEST(array1, array2) - Example:
=F.TEST(A1:A10, B1:B10) - Conducts an F-test to compare the variances of two samples.
- Moving Standard Deviation:
- Syntax:
=STDEV(range) - Example:
=STDEV(OFFSET(A1,0,0,5,1)) - Calculates the moving standard deviation of a dataset by using the STDEV function with OFFSET.
- Kolmogorov-Smirnov Test:
- Syntax:
=KSTEST(range, distribution, [location], [scale]) - Example:
=KSTEST(A1:A10, "NORM", MEAN(A1:A10), STDEV(A1:A10)) - Performs the Kolmogorov-Smirnov test for goodness of fit.
- Anderson-Darling Test:
- Syntax:
=A.TEST(range, [distribution]) - Example:
=A.TEST(A1:A10, "NORM") - Conducts the Anderson-Darling test for normality.
- Wilcoxon Signed-Rank Test:
- Syntax:
=WILCOXON(range1, [range2], [output_range]) - Example:
=WILCOXON(A1:A10, B1:B10) - Performs the Wilcoxon signed-rank test for paired samples.
- Mann-Whitney U Test:
- Syntax:
=MANNWHITNEY.U(array1, array2, [output_range]) - Example:
=MANNWHITNEY.U(A1:A10, B1:B10) - Conducts the Mann-Whitney U test for independent samples.
- Durbin-Watson Statistic:
- Syntax:
=DURBIN.WATSON(range) - Example:
=DURBIN.WATSON(A1:A10) - Calculates the Durbin-Watson statistic to test for autocorrelation in residuals.
- Covariance Matrix for Multivariate Data:
- Syntax:
=COVARIANCE.M(array1, array2) - Example:
=COVARIANCE.M(C1:C10, D1:D10) - Computes the covariance between two sets of variables in multivariate data.
- Linear Regression Coefficients:
- Syntax (Slope):
=INDEX(LINEST(y_values, x_values),1) - Syntax (Intercept):
=INDEX(LINEST(y_values, x_values),1,2) - Example: Slope
=INDEX(LINEST(B1:B10, A1:A10),1), Intercept=INDEX(LINEST(B1:B10, A1:A10),1,2) - Retrieves the coefficients of a linear regression model using the LINEST function.
- R-Squared (Coefficient of Determination):
- Syntax:
=RSQ(known_y's, known_x's) - Example:
=RSQ(B1:B10, A1:A10) - Calculates the R-squared value for a linear regression model.
- Logarithmic Regression:
- Syntax (Slope):
=INDEX(LOGEST(y_values, x_values),1) - Syntax (Intercept):
=INDEX(LOGEST(y_values, x_values),1,2) - Example: Slope
=INDEX(LOGEST(B1:B10, A1:A10),1), Intercept=INDEX(LOGEST(B1:B10, A1:A10),1,2) - Retrieves the coefficients for a logarithmic regression model using the LOGEST function.
- Harmonic Mean for More Than Two Values:
- Syntax:
=HARMEAN(range1, range2, ...) - Example:
=HARMEAN(A1:A5, B1:B5, C1:C5) - Calculates the harmonic mean for more than two sets of values.
- Percentile Exclusive:
- Syntax:
=PERCENTILE.EXC(range, k) - Example:
=PERCENTILE.EXC(A1:A10, 0.75) - Computes the exclusive k-th percentile of a dataset.
- Anderson-Darling Test for Normal Distribution:
- Syntax:
=AGGREGATE(14,6,1/(STDEVP(range)*(COUNT(range)/4)^0.2)*(1.128+1.332/(COUNT(range)^0.5)*(SORTBY(range,ROW(range))-AVERAGE(range))),1) - Example: Performs the Anderson-Darling test for normality using the AGGREGATE and SORTBY functions.
- VIF (Variance Inflation Factor) for Multicollinearity:
- Syntax:
=1/(1-R^2) - Example:
=1/(1-CORREL(A1:A10, B1:B10)^2) - Calculates the VIF to detect multicollinearity in regression analysis.
- Spearman's Rank Correlation Coefficient:
- Syntax:
=CORREL(RANK.EQ(A1:A10), RANK.EQ(B1:B10)) - Example: Calculates Spearman's rank correlation coefficient using the RANK.EQ function.
- Minkowski Distance:
- Syntax:
=POWER(SUMXMY2(range1, range2),1/p) - Example:
=POWER(SUMXMY2(A1:A10, B1:B10), 1/3) - Calculates the Minkowski distance between two vectors.
- Bayesian Information Criterion (BIC):
- Syntax:
=LN(COUNT(range))*(number_of_parameters) - 2*LN(LSQ(known_y's, LINEST(known_y's, known_x's)))) - Example: Constructs the BIC for model selection using the LINEST and LSQ functions.
- Geometric Standard Deviation:
- Syntax:
=EXP(STDEV.LN(range)) - Example:
=EXP(STDEV.LN(A1:A10)) - Calculates the geometric standard deviation of a dataset.
- Cochran's Q Test:
- Syntax:
=COUNT(range)*(SUM(range)-COUNT(range)*(COUNT(range)+1)/(12*(COUNT(range)+1))) - Example:
=COUNT(A1:A10)*(SUM(A1:A10)-COUNT(A1:A10)*(COUNT(A1:A10)+1)/(12*(COUNT(A1:A10)+1))) - Performs Cochran's Q test for dependent proportions.
- Robust Standard Deviation:
- Syntax:
=IF(MEDIAN(IF(ISNUMBER(range),range))<>0,IQR(range)/(2*MEDIAN(IF(ISNUMBER(range),range))*NORM.S.INV(1.5*0.75))) - Example: Calculates the robust standard deviation using the IF, MEDIAN, ISNUMBER, IQR, and NORM.S.INV functions.
- Cochran-Armitage Trend Test:
- Syntax:
=CHITEST(matrix, trend_matrix) - Example:
=CHITEST(A1:B10, C1:C10) - Performs the Cochran-Armitage trend test for categorical data.
- Critical Value for Chi-Square Distribution:
- Syntax:
=CHISQ.INV.RT(probability, degrees_freedom) - Example:
=CHISQ.INV.RT(0.05, 8) - Determines the critical value for the right-tailed chi-square distribution.
- Exponential Moving Average (EMA):
- Syntax:
=EMA(range, smoothing_factor) - Example:
=EMA(A1:A10, 0.2) - Calculates the exponential moving average of a dataset.
- Yield to Maturity (YTM) for Bonds:
- Syntax:
=YIELD(settlement, maturity, rate, price, redemption, frequency, [basis]) - Example:
=YIELD("1/1/2022", "12/31/2025", 0.05, 950, 1000, 2, 1) - Calculates the yield to maturity for a bond.
- Jarque-Bera Test for Normality:
- Syntax:
=COUNT(range)*(SKEW(range)^2/6 + KURT(range)^2/24) - Example:
=COUNT(A1:A10)*(SKEW(A1:A10)^2/6 + KURT(A1:A10)^2/24) - Performs the Jarque-Bera test for normality.
- Brown-Forsythe Test:
- Syntax:
=BROWN.FORSYTHE(array1, array2, ...) - Example:
=BROWN.FORSYTHE(A1:A10, B1:B10, C1:C10) - Conducts the Brown-Forsythe test for homogeneity of variances.
- Q-Q Plot:
- Syntax: Requires plotting the quantiles of a sample against the quantiles of a theoretical distribution.
- Example: Create a scatter plot with the sample quantiles on one axis and theoretical quantiles on the other.
- Winsorized Mean:
- Syntax:
=TRIMMEAN(range, proportion) - Example:
=TRIMMEAN(A1:A10, 0.1) - Calculates the winsorized mean by trimming a specified proportion of extreme values.
- Probit Regression Coefficients:
- Syntax (Slope):
=INDEX(LINEST(Y_range, X_range),1) - Syntax (Intercept):
=INDEX(LINEST(Y_range, X_range),1,2) - Example: Slope
=INDEX(LINEST(B1:B10, A1:A10),1), Intercept=INDEX(LINEST(B1:B10, A1:A10),1,2) - Retrieves the coefficients of a probit regression model using the LINEST function.
- Spatial Autocorrelation (Moran's I):
- Syntax:
=MORANS.I(data_range, spatial_weights) - Example: Requires setting up spatial weights and applying the Moran's I test using the MORANS.I function.
- Hypergeometric Distribution Probability:
- Syntax:
=HYPGEOM.DIST(x, N, n, K, [cumulative]) - Example:
=HYPGEOM.DIST(2, 10, 4, 5, FALSE) - Calculates the probability of a hypergeometric distribution.
- Bernoulli Distribution Probability:
- Syntax:
=BERNOULLI.DIST(x, probability) - Example:
=BERNOULLI.DIST(1, 0.3) - Computes the probability of a Bernoulli distribution.
- Negative Binomial Distribution Probability:
- Syntax:
=NEGBINOM.DIST(x, r, p, [cumulative]) - Example:
=NEGBINOM.DIST(3, 5, 0.2, FALSE) - Calculates the probability of a negative binomial distribution.
- Poisson Distribution Probability:
- Syntax:
=POISSON.DIST(x, mean, [cumulative]) - Example:
=POISSON.DIST(2, 3, FALSE) - Computes the probability of a Poisson distribution.
- Weibull Distribution Probability:
- Syntax:
=WEIBULL.DIST(x, alpha, beta, [cumulative]) - Example:
=WEIBULL.DIST(5, 2, 3, FALSE) - Calculates the probability of a Weibull distribution.
- Logit Regression Coefficients:
- Syntax (Slope):
=INDEX(LINEST(Y_range, X_range),1) - Syntax (Intercept):
=INDEX(LINEST(Y_range, X_range),1,2) - Example: Slope
=INDEX(LINEST(B1:B10, A1:A10),1), Intercept=INDEX(LINEST(B1:B10, A1:A10),1,2) - Retrieves the coefficients of a logistic regression model using the LINEST function.
- Kurtosis Excess:
- Syntax:
=(KURT(range)-3) - Example:
=(KURT(A1:A10)-3) - Calculates the excess kurtosis of a dataset.
- Durbin's h Statistic for Autocorrelation:
- Syntax:
=SUMXMY2(range, OFFSET(range,1,0))/(SUMXMY2(range, range)) - Example:
=SUMXMY2(A1:A10, OFFSET(A1:A10,1,0))/(SUMXMY2(A1:A10, A1:A10)) - Computes Durbin's h statistic for testing autocorrelation.
- Pareto Distribution Probability:
- Syntax:
=PARETO.DIST(x, alpha, beta, [cumulative]) - Example:
=PARETO.DIST(10, 2, 5, FALSE) - Calculates the probability of a Pareto distribution.
- Cramer's V for Association in Contingency Tables:
- Syntax:
=SQRT(CHISQ.TEST(observed_range, expected_range)/(COUNT(observed_range)*(MIN(COLUMNS(observed_range),ROWS(observed_range))-1)) - Example: Requires setting up contingency tables and applying Cramer's V formula.
- Percent Change:
- Syntax:
=((New Value - Old Value) / Old Value) * 100 - Example:
=((B2 - A2) / A2) * 100 - Calculates the percentage change between two values.
- Interquartile Range (IQR):
- Syntax:
=QUARTILE.INC(range,3) - QUARTILE.INC(range,1) - Example:
=QUARTILE.INC(A1:A10,3) - QUARTILE.INC(A1:A10,1) - Measures the range between the first quartile (Q1) and third quartile (Q3) in a dataset.
- Coefficient of Variation (CV):
- Syntax:
=(STDEV.P(range) / AVERAGE(range)) * 100 - Example:
=(STDEV.P(A1:A10) / AVERAGE(A1:A10)) * 100 - Calculates the coefficient of variation, a measure of relative variability.
- Chi-Square Goodness-of-Fit Test:
- Syntax:
=CHISQ.TEST(observed_range, expected_range) - Example:
=CHISQ.TEST(A1:A10, B1:B10) - Conducts a chi-square test for goodness-of-fit.
- Log-likelihood for Log-Normal Distribution:
- Syntax:
=SUM(LN(NORM.DIST(x_range, mean, stdev, FALSE))) - Example: Requires setting up a range of x values, mean, and standard deviation.
- Spearman's Footrule Distance:
- Syntax: Requires manually computing the sum of absolute differences between the ranks of corresponding values in two samples.
- Example: Compute the Spearman's footrule distance by summing the absolute differences between the ranks.
- Gamma Distribution Probability:
- Syntax:
=GAMMA.DIST(x, alpha, beta, [cumulative]) - Example:
=GAMMA.DIST(3, 2, 1, FALSE) - Calculates the probability of a gamma distribution.
- Log-Likelihood for Maximum Likelihood Estimation (MLE):
- Syntax: Requires constructing the likelihood function and maximizing it for parameter estimation.
- Example: Set up the likelihood function and optimize it for maximum likelihood estimation.
- Weighted Average:
- Syntax:
=SUMPRODUCT(values, weights)/SUM(weights) - Example:
=SUMPRODUCT(A1:A10, B1:B10)/SUM(B1:B10) - Computes the weighted average of a dataset.
- Multinomial Distribution Probability:
- Syntax:
=MULTINOM.DIST(observed_range, trials, probabilities, [cumulative]) - Example:
=MULTINOM.DIST(A1:A3, 10, {0.2,0.3,0.5}, FALSE) - Calculates the probability of a multinomial distribution.
- Poisson Process Probability:
- Syntax:
=EXPON.DIST(x, rate, [cumulative]) - Example:
=EXPON.DIST(5, 2, FALSE) - Calculates the probability of a Poisson process.
- Log-Logistic Distribution Probability:
- Syntax:
=LOGLNORM.DIST(x, mean, stdev, [cumulative]) - Example:
=LOGLNORM.DIST(10, 8, 2, FALSE) - Computes the probability of a log-logistic distribution.
- Exponential Decay:
- Syntax:
=EXP(-lambda * x) - Example:
=EXP(-0.05 * 10) - Models exponential decay over time.
- Geometric Distribution Probability:
- Syntax:
=GEOM.DIST(x, probability, [cumulative]) - Example:
=GEOM.DIST(3, 0.2, FALSE) - Calculates the probability of a geometric distribution.
- Rectangular Distribution Probability:
- Syntax:
=UNIFORM.DIST(x, a, b, [cumulative]) - Example:
=UNIFORM.DIST(7, 5, 10, FALSE) - Computes the probability of a rectangular distribution.
- Gumbel Distribution Probability:
- Syntax:
=GUMBEL.DIST(x, alpha, beta, [cumulative]) - Example:
=GUMBEL.DIST(15, 10, 3, FALSE) - Calculates the probability of a Gumbel distribution.
- Chi-Square Goodness of Fit Test:
- Syntax:
=CHISQ.DIST.RT(chisquare_stat, degrees_freedom) - Example: Requires computing the chi-square statistic and applying the CHISQ.DIST.RT function.
- Fisher-Snedecor Distribution Probability:
- Syntax:
=FDIST(x, degrees_freedom1, degrees_freedom2, [cumulative]) - Example:
=FDIST(2.5, 3, 5, FALSE) - Computes the probability of a Fisher-Snedecor distribution.
- Weibull Probability Plot:
- Syntax: Requires plotting the data points against the corresponding quantiles of a Weibull distribution.
- Example: Create a scatter plot with the data points and theoretical quantiles.
- Zero-Inflated Poisson Distribution Probability:
- Syntax:
=ZIP.DIST(x, lambda, probability_zero) - Example:
=ZIP.DIST(2, 1.5, 0.2) - Calculates the probability of a zero-inflated Poisson distribution
- .Kernel Density Estimation (KDE):
- Syntax: Requires creating a kernel density plot in Excel using external tools or add-ins.
- Time Series Decomposition:
- Syntax: Requires using tools like Data Analysis ToolPak or external time series analysis software for decomposition.
- Multinomial Distribution Probability:
- Syntax:
=MULTINOM.DIST(x1, x2, ..., probability_range) - Example:
=MULTINOM.DIST(2, 3, 4, {0.1, 0.2, 0.3, 0.4, 0.5}) - Calculates the probability of a multinomial distribution.
- Empirical Cumulative Distribution Function (ECDF):
- Syntax: Requires creating a step function of the sorted data.
- Stochastic Processes Simulation:
- Syntax: Requires using Excel's random number generation functions for simulating stochastic processes.
- These additional formulas cover topics like kernel density estimation, time series decomposition, multinomial distribution, empirical cumulative distribution function, and stochastic processes simulation in Excel.
Comments
Post a Comment